Capillary micromechanics for core-shell particles.

نویسندگان

  • Tiantian Kong
  • Liqiu Wang
  • Hans M Wyss
  • Ho Cheung Shum
چکیده

In this work, we have developed a facile, economical microfluidic approach as well as a simple model description to measure and predict the mechanical properties of composite core-shell microparticles made from materials with dramatically different elastic properties. By forcing the particles through a tapered capillary and analyzing their deformation, the shear and compressive moduli can be measured in one single experiment. We have also formulated theoretical models that accurately capture the moduli of the microparticles in both the elastic and the non-linear deformation regimes. Our results show how the moduli of these core-shell structures depend on the material composition of the core-shell microparticles, as well as on their microstructures. The proposed technique and the understanding enabled by it also provide valuable insights into the mechanical behavior of analogous biomaterials, such as liposomes and cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.

The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate cor...

متن کامل

Gradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...

متن کامل

Gradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...

متن کامل

The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles

In this paper, the temperature dependence on optical absorption cross section of the core shell bimetallic nanoparticles (NPs) is investigated in quasi static approximation. Temperature dependence of the plasmon resonance is important issue because of recent applications of NPs of noble metal for heat treating of cancer and the computer chips. The effect of temperature on surface plasmon resona...

متن کامل

A systematic growth of Gold nanoseeds on Silica for Silica@Gold core-shell nanoparticles and investigation of optical properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties, which render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 18  شماره 

صفحات  -

تاریخ انتشار 2014